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(57) ABSTRACT

Various embodiments are disclosed for optimal online adap-
tive control. One such method includes a cost function deter-
mination by a critic network coupled to the system under
control. The cost function is one produces a minimum value
for a cost of the system under control when applied by an
action network. The method also includes a control input
determination by an action network. The control input deter-
mination uses the cost function to determine a control input to
apply to the system under control. The control input is one
that produces the minimum value for the cost of the system
under control. The method also includes simultaneously tun-
ing respective parameters of the critic network and the action
network by applying respective tuning laws that do not
involve the system dynamics function f(x) for the system
under test.
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OPTIMAL ONLINE ADAPTIVE
CONTROLLER

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/618,585, entitled “Optimal Online Adap-
tive Controller,” filed Mar. 30, 2012, which is hereby incor-
porated by reference in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

The U.S. government has a paid-up license in this invention
and the right in limited circumstances to require the patent
owner to license others on reasonable terms as provided for
by the terms of Contract No. ECS-0801330 awarded by the
National Science Foundation of the U.S.; by the terms of
Contract No. ECCS-1128050 awarded to the Army Research
Office; and by the terms of Contract No. FA9550-09-1-0278
awarded to the Air Force Office of Scientific Research.

BACKGROUND

Automatic feedback control is used in various fields such
as: autopilots for aircraft, ships, and ground vehicles; indus-
trial process control; factory automation; robotics; and other
applications. In the context of this disclosure, “oftline” means
the controller parameters are pre-computed and stored. In
contrast, “online” means the controller learns, and parameters
are computed, as the system operates, e.g. as the aircraft flies.
Computing and updating controller parameters using online
solutions may allow for changing dynamics, for example, to
handle the reduced weight of the aircraft as the fuel burns.

Conventional optimal feedback control design is per-
formed offline by solving optimal design matrix equations.
Furthermore, it is difficult to perform optimal feedback con-
trol designs for nonlinear systems since they rely on solutions
to complicated Hamilton-Jacobi (HJ) or Hamilton-Jacobi-
Isaacs (HJI) equations. A complete system dynamics model is
needed to solve HJI equations, but such complete models are
often difficult to obtain. Also, offline solutions do not allow
performance objectives to be modified as the controller
learns.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better under-
stood with reference to the following drawings. The compo-
nents in the drawings are not necessarily to scale, emphasis
instead being placed upon clearly illustrating the principles of
the disclosure. Moreover, in the drawings, like reference
numerals designate corresponding parts throughout the sev-
eral views.

FIG. 1 is a block diagram of a system that includes an
optimal online adaptive controller, according to some
embodiments disclosed herein.

FIG. 2 is a flowchart illustrating operation of the optimal
online adaptive controller of FIG. 1, according to some
embodiments disclosed herein.

FIG. 3 is a component block diagram of a computing
system that implements the optimal online adaptive control-
ler of FIG. 1, according to some embodiments disclosed
herein.

DETAILED DESCRIPTION

In accordance with some embodiments disclosed herein,
online and adaptive techniques are disclosed that use integral
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reinforcement learning knowledge for learning the continu-
ous-time optimal control solution for nonlinear systems. The
nonlinear systems have infinite horizon costs. These tech-
niques are a data-based approach to the solution of the Hamil-
ton-Jacobi-Bellman (HIB) equation, and require only partial
knowledge of the nonlinear system’s dynamics.

The adaptive techniques disclosed herein are based on
policy iteration. In accordance with some embodiments of the
invention, the techniques are implemented using a dual net-
work structure that includes an actor network and a critic
network. In accordance with the preferred embodiments, both
action and critic approximation networks are adapted simul-
taneously. Novel tuning equations are disclosed for both critic
and action network parameters. In some embodiments, novel
terms in the action tuning law are used to guarantee closed-
loop dynamic stability.

In accordance with some embodiments disclosed herein,
techniques and system are provided for continuous-time
adaptive control systems. In comparison to discrete-time sys-
tems, continuous-time systems are more analogous for direct
modeling of physical processes and dynamical systems.

In accordance with some embodiments disclosed herein,
novel features include unified action-critic reinforcement
learning with adaptive control; an action-critic control struc-
ture with simultaneous tuning of action and critic control
loops for continuous-time (CT) systems; an adaptive control
architecture that converges to an optimal control solution
online in real time; an adaptive control architecture with an
outer and inner adaptive loop, wherein the outer loop identi-
fies a performance index value; for linear systems, an optimal
adaptive controller that solves the algebraic Riccati equation
online without knowing the plant system matrix A; for non-
linear systems, an optimal adaptive controller that approxi-
mately solves the Hamilton-Jacobi-Bellman (HIB) equation
online without knowing the system drift dynamics; and the
optimal adaptive controller learns the optimal solution online
while also guaranteeing system stability.

FIG. 1 is a block diagram of a system including an optimal
online adaptive controller. A system under test 110, also
known as a “plant,” is a nonlinear dynamical system
described by the differential equation (1) shown below:

HO=Fx)+g(x)u M

where x(t) is the system state and u is a set of control inputs.
For simplicity, sometimes u is referred to herein as a control
input, in the singular, in which case u can be viewed as a
composite input signal. Functions f(x) and g(x) describe the
system dynamics, with function f(x) being referred to herein
as the “drift term.”

Functions f(x) and g(x) depend on the specific system
being modeled, as should be appreciated. The functions f(x),
g(x) and control inputs u may be used to describe specific
systems such as:

Aircraft, where the states x(t) include the altitude, angle of
attack, speed, and so on and the control inputs u are
throttle, elevator, aileron, and so on.

Chemical processes, where the states x(t) include tempera-
tures, fluid flows, and so on and the control inputs u are
heater elements, valves, and so on.

Electric power systems, where the states x(t) include cur-
rents, voltages, power flow, and so on and the control
inputs u are generator speeds, motor excitations and so
on.

Automotive vehicles where the states x(t) include engine
rotational speed, automobile speed, and so on and the
control inputs u are throttle, fuel/air mixture, and so on.
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Ships where the states x(t) include speed, heading, engine
rotation speed, and so on and the control inputs u are fuel
injected and other engine inputs, and ship inputs such as
rudder angle.

The optimal online adaptive controller 120 determines the
states x(t) of the system under test 110 by measuring various
types of input and output data using sensors coupled to, or
otherwise in communication with, the system under test 110.
The optimal online adaptive controller 120 determines the
control input u to achieve stability and desired motion of the
system given in equation (1) and also to minimize an energy-
based cost function as given in equation (2).

Vixg) = fmr(x(‘r), u(t)dr = fm(Q(x)+uTRu)dT @
0 0

In equation (2), the energy used by the control input u is
u’Ru and the energy of the system states is Q(x). The matrix
R and the function Q(x) can be selected by the engineer that
designs optimal online adaptive controller to achieve a variety
of goals such as minimizing control energy used, minimizing
fuel, minimizing various forms of energy of the system states,
and so on.

The optimal online adaptive controller 120 includes two
learning systems or learning networks, action network 130
and critic network 140, that interact with each other. These
networks may be implemented using artificial neural net-
works (ANNs). The action network 130 uses a control policy
to determine the control input u(x) that is applied to the
system under test 110 and the critic network 140 estimates the
associated cost function V(x), which indicates the energy
used by the system under test 110. In some embodiments
disclosed herein, the action network 130 is an inner loop
feedback controller and the critic network 140 is an outer loop
feedback controller. Both are located in a feed forward path
with respect to the system under test 110.

The action network 130 is characterized by equation (3):

u(x) = - %R’lgT(xW d" Wau(x) @

1 N
=-5R g @V W,

where Wz are parameters that are learned or updated online.
The critic network 140 estimates the cost function given by
equation (2): and may be characterized by equation (4):

V= ") Q)

where Wl are parameters that are learned or updated online.
In equations (3) and (4), ¢(x) is a set of basis functions
suitably chosen depending on the specifics of nonlinear
dynamical system under test 110.

The parameters W, of the critic network 140 and the
parameters W, of the action network 130 are updated, or
tuned, online according to the update, or tuning, laws given by
equations (5) and (6):

ﬁ/l ) 5
—a % [£T(Q(x) +ul Ruydt + Ag(x(0)" W,
Wa = —as(FaWs = FAGG0) W) ©
T

In some embodiments, this updating performed is by a policy
iterator 150. In some embodiments disclosed herein, the term
Adp(x(1))=px(t+T))-p(x(1)) is computed in real time along the
system motion.
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The specific tuning laws used by the optimal online adap-
tive controller 120 allow the parameters W, and W, to con-
verge to the optimal solution that minimizes the cost function
given by equation (2). Specifically, the critic network 140
characterized by equation (4) learns the minimum possible
value of the energy cost given by equation (2), while the
action network 130 characterized by equation (3) learns the
optimal control that produces this best minimum value.

Notably, the tuning laws used by the optimal online adap-
tive controller 120 do not involve the system dynamics drift
term f(x), which allows the optimal control to be learned
online by the controller 120, using only a partial model of
system dynamics. That is, only measured input/output data
provided by sensors coupled to the system under test 110 is
used by the optimal online adaptive controller 120 to find the
optimal solution.

The use of a partial rather than complete model is accom-
plished by decomposing the cost function of equation (2) into
two parts by writing it in the Integral Reinforcement Learning
(IRL) form given by equation (7):

+T (7)
Vix(n) = f rix, ) dr+Vx@+T))

Equation (7) can be viewed as a Bellman equation for
continuous-time (CT) systems, and is referred to herein as the
IRL form of the Bellman equation. In contrast, the Bellman
equation used by conventional policy iteration algorithms
includes both f(x) and g(x) terms, and thus requires a full
system dynamics model. Because of the additional complex-
ity of the full model, controllers using conventional policy
iteration algorithms must find the optimal solution offline.

Although the embodiments described above were
described in the context of continuous-time (CT) systems, in
some embodiments of the invention the optimal online adap-
tive controller 120 is used to control of discrete-time (DT)
systems. Such DT systems have nonlinear dynamics in the
form given by equation 8:

®)

Equation 8 is for a sampled data nonlinear dynamical system
based on a fixed sampling period. The sampled data nonlinear
dynamical system can model the same types of physical sys-
tems as the continuous-time dynamic system described by
equation (1).

Various embodiments of the optimal online adaptive con-

troller 120 may have the following capabilities:

Guaranteed stability of the system given by equation (1).
That is, the system states x(t) are guaranteed to be
bounded near their desired values regardless of system
disturbances.

Minimization of the cost function given by equation (2).
That is, the control yields minimum energy motion that
makes the expended energy costs small.

Online learning of the optimal minimizing solution, in real
time, by measuring the system states x(t) and control
inputs u. This is called adaptive learning in real time.

Online learning of the optimal solution without knowing
the system dynamics function f(x).

Full proofs and guarantees on the correct performance of
the controller including stability of the system charac-
terized by equation (1) and optimality of the energy cost
function given by equation (2).

FIG. 2 is a flowchart illustrating operation of the optimal

online adaptive controller 120, according to some embodi-

0= F g ()
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ments disclosed herein. The process begins at block 210,
where the critic network 140 determines the minimum cost to
the system under test 110 when an output is applied to the
system under test 110. Next, at block 220, the action network
130 uses the minimum cost computed at block 210 to deter-
mine a control input to the system under test 110. At block
230, the control input developed at 220 is applied to the
system under test 110. At block 240, the policy iterator 150
simultaneously updates, or tunes, the W, and W, parameters
of the action network 130 and the critic network 140. As
described herein, the updated is performed in accordance
with the tuning laws described by equations (5) and (6),
which use the IRL form of the Bellman equation. The only
data from the system under test 110 that is used by the tuning
of'block 240 is input/output data that is obtained by measur-
ing the system under test 110.

FIG. 3 is ablock diagram of a computing device that can be
used to implement the optimal online adaptive controller 120
according to various embodiments disclosed herein. The
computer contains a number of components that are familiar
to a person of ordinary skill in the art, including a processor
310, memory 320, non-volatile storage 330 (e.g., hard disk,
flash RAM, flash ROM, EEPROM, etc.), and one or more
input/output (I/0) devices 340. The components are coupled
via one or more buses 350. The 1/O devices 340 may be
coupled to, or otherwise in communication with, various
sensors that measure inputs and outputs of the system under
test 110. Omitted from the above figure are a number of
conventional components, known to those skilled in the art,
which are not necessary to explain the operation of the com-
puter.

The optimal online adaptive controller 120 and other vari-
ous components described herein may be implemented in
software or firmware (i.e., code executed by a processor),
may be embodied in dedicated hardware, or a combination
thereof. In a software embodiment, instructions are loaded
into the memory 320 and from there executed by the proces-
sor 310. Thus, the processor 310 is configured by these
instructions to implement the optimal online adaptive con-
troller 120. In a dedicated hardware embodiment, the optimal
online adaptive controller 120 may be implemented as a cir-
cuit or state machine that employs any one of or a combina-
tion of a number of technologies. These technologies may
include, but are not limited to, discrete logic, a programmable
logic device, an application specific integrated circuit
(ASIC), afield programmable gate array (FPGA), asystem on
chip (SoC), a system in package (SiP), or any other hardware
device having logic gates for implementing various logic
functions upon an application of one or more data signals.
Such technologies are generally well known by those skilled
in the art and, consequently, are not described in detail herein.

Any logic or application described herein (including the
optimal online adaptive controller 120) that comprises soft-
ware or code can be embodied in any non-transitory com-
puter-readable medium for use by or in connection with an
instruction execution system such as, for example, the pro-
cessor 310. In this sense, the logic may comprise, for
example, statements including instructions and declarations
that can be fetched from the computer-readable medium and
executed by the processor 310. In the context of the present
disclosure, a “computer-readable medium” can be any
medium that can contain, store, or maintain the logic or appli-
cation described herein for use by or in connection with the
instruction execution system. The computer-readable
medium can comprise any one of many physical media such
as, for example, magnetic, optical, or semiconductor media.
More specific examples of a suitable computer-readable
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medium would include, but are not limited to, magnetic tapes,
magnetic floppy diskettes, magnetic hard drives, memory
cards, solid-state drives, USB flash drives, or optical discs.
Also, the computer-readable medium may be a random
access memory (RAM) including, for example, static random
access memory (SRAM) and dynamic random access
memory (DRAM), or magnetic random access memory
(MRAM). In addition, the computer-readable medium may
be a read-only memory (ROM), a programmable read-only
memory (PROM), an erasable programmable read-only
memory (EPROM), an electrically erasable programmable
read-only memory (EEPROM), or other type of memory
device.

The diagrams herein show the functionality and operation
of'an implementation of portions of the optimal online adap-
tive controller 120. If embodied in software, each block in
these diagrams may represent a module, segment, or portion
of'code that comprises program instructions to implement the
specified logical function(s). The program instructions may
be embodied in the form of source code that comprises
human-readable statements written in a programming lan-
guage or machine code that comprises numerical instructions
recognizable by a suitable execution system such as the pro-
cessor 310 in a computer system or other system. The
machine code may be converted from the source code, etc. If
embodied in hardware, each block may represent a circuit or
a number of interconnected circuits to implement the speci-
fied logical function(s).

Although any flowchart(s)) described herein show a spe-
cific order of execution, it is understood that the order of
execution may differ from that which is depicted. For
example, the order of execution of two or more blocks may be
scrambled relative to the order shown. Also, two or more
blocks shown in succession in the flowcharts may be executed
concurrently or with partial concurrence. Further, in some
embodiments, one or more of the blocks shown in a flowchart
may be skipped or omitted. In addition, any number of
counters, state variables, warning semaphores, or messages
might be added to the logical flow described herein, for pur-
poses of enhanced utility, accounting, performance measure-
ment, or providing troubleshooting aids, etc. It is understood
that all such variations are within the scope of the present
disclosure. It is understood that the diagrams herein merely
provide an example of the many different types of functional
arrangements that may be employed to implement the opera-
tion of portion(s) of the optimal online adaptive controller
120 as described herein. As an alternative, the flowcharts may
be viewed as depicting an example of steps of a method
implemented by the optimal online adaptive controller 120
according to one or more embodiments.

It should be emphasized that the above-described embodi-
ments of the present disclosure are merely possible examples
of implementations set forth for a clear understanding of the
principles of the disclosure. Many variations and modifica-
tions may be made to the above-described embodiment(s)
without departing substantially from the spirit and principles
of the disclosure. All such modifications and variations are
intended to be included herein within the scope of this dis-
closure and protected by the following claims.

Therefore, the following is claimed:

1. A method of adaptively controlling a continuous-time
system under control, the continuous-time system under con-
trol being described by a system dynamics function f(x), the
method comprising:

in a critic network coupled to the continuous-time system

under control, determining a cost function that produces
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a minimum value for a cost of the continuous-time sys-
tem under control when applied by an action network;

in the action network also coupled to the continuous-time
system under control, determining, using the cost func-
tion, a control input to apply to the continuous-time
system under control that produces the minimum value
for the cost of the continuous-time system under control;
and

tuning respective parameters of the critic network and the

action network together and continuously in time by
applying respective tuning laws that do not involve the
system dynamics function f(x).

2. The method of claim 1, wherein the tuning laws use an
integral reinforcement learning (IRL) form of a Bellman
equation.

3. The method of claim 1, wherein the only data obtained
from the continuous-time system under test that is used dur-
ing the tuning is measured input/output data from the con-
tinuous-time system under test.

4. The method of claim 1, wherein the tuning law for the
critic network is given by

Ap(x(0)”

(1 +Ap(x(0)" Ad(x(1))

[f' (Qx) + " Ruydt + Ap(x(0))T W1 |,
=T

where w , corresponds to the tuned parameters, ¢(t) is a set of
basis functions associated with the continuous-time system
under control, u’Ru is the energy used when applying the
control input, and Q(x) is an amount of energy for a plurality
of system states associated with the continuous-time system
under control.

5. The method of claim 1, wherein the tuning law for the
critic network is given by

W, = —ax(FaWa — FlAg(x(0)" Wy) -

L DyoW Agx()” W
L e ..
A A (e T A1)

where \§v2 corresponds to the tuned parameters, ¢(t) is a set of
basis functions associated with the continuous-time system
under control, u’Ru is the energy used when applying the
control input, and Q(x) is an amount of energy for a plurality
of system states associated with the continuous-time system
under control.

6. The method of claim 1, wherein the tuning is performed
when the continuous-time system under control is online.

7. The method of claim 1, wherein the cost function is
learned by the critic network in real time.

8. The method of claim 1, wherein the continuous-time
system under control is further described by a set of system
dynamics and the tuning law for the critic network uses only
a partially complete model of the system dynamics.

9. The method of claim 1, wherein the cost of the continu-
ous-time system under control corresponds to an amount of
control energy used by the continuous-time system under
control.

10. The method of claim 1, wherein the cost of the con-
tinuous-time system under control corresponds to an amount
of fuel used by the continuous-time system under control.

11. The method of claim 1, wherein the continuous-time
system under control is further described as a series of system
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states and the cost of the continuous-time system under con-
trol corresponds to an amount of energy used in the system
states.

12. A controller for a continuous-time system under con-
trol, the continuous-time system under control being
described by a system dynamics function {(x), the controller
comprising:

an inner-loop feedback controller located in a feed forward

path with respect to the continuous-time system under
control;

an outer-loop feedback controller in the feed forward path;

and

a policy iterator,

wherein the inner-loop feedback controller comprises the

continuous-time system under control and an action net-
work in a feedback loop coupled to the continuous-time
system under control,

wherein the outer-loop feedback controller comprises a

critic network in the feedback loop coupled to the action
network, and

wherein the policy iterator is operable to tune respective

parameters of the critic network and the action network
together and continuously in time by applying respec-
tive tuning laws that do not involve the system dynamics
function f(x).

13. The controller of claim 12, wherein the only data used
by the policy iterator from the continuous-time system under
test is measured input/output data.

14. The controller of claim 12, wherein the action network
is operable to determine a control input to apply to the con-
tinuous-time system under control, wherein the action net-
work learns the control input in real time.

15. The controller of claim 12, wherein the critic network is
operableto determine a minimum cost functionto apply to the
action network, wherein the critic network learns the mini-
mum cost function in real time.

16. A non-transitory computer-readable medium embody-
ing a control program executable in at least one computing
device to control a continuous-time system under control, the
continuous-time system under control being described by a
system dynamics function f(x), the control program compris-
ing:

critic network code that determines a cost function that

produces a minimum value for a cost of the continuous-
time system under control when applied by an action
network;

action network code that determines, using the cost func-

tion, a control input to apply to the continuous-time
system under control that produces the minimum value
for the cost of the continuous-time system under control;
and

policy iterator code that tunes respective parameters of the

critic network and the action network together and con-
tinuously in time by applying respective tuning laws that
do not involve the system dynamics function f(x).

17. The non-transitory computer-readable medium of
claim 16, wherein the tuning law for the critic network is
given by

Ap(x(0)”

(1 +Ap(x(r) T Ad(x(1))

[f (Qx) + u" Ruydt + Ap(x(0))T W1 |,
=T

where w , corresponds to the tuned parameters, ¢(t) is a set of
basis functions associated with the continuous-time system
under control, u’Ru is the energy used when applying the
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control input, and Q(x) is an amount of energy for a plurality
of system states associated with the continuous-time system
under control.

18. The non-transitory computer-readable medium of
claim 16, wherein the tuning law for the critic network is
given by

Ws = —aa( FWa - FiAG(0) W) -

Ap(x(r)”

1 _ A
@D W, ———————————
2 ) 80

where €V2 corresponds to the tuned parameters, ¢(t) is a set of
basis functions associated with the continuous-time system
under control, u’Ru is the energy used when applying the
control input, and Q(x) is an amount of energy for a plurality
of system states associated with the continuous-time system
under control.

19. The non-transitory computer-readable medium of
claim 16, wherein the continuous-time system under control
is further described by a set of system dynamics and the
tuning law for the critic network code uses only a partially
complete model of the system dynamics.

20. The non-transitory computer-readable medium of
claim 16, wherein the policy iterator code performs the tuning
of'the critic network and the action network together when the
continuous-time system under control is online.
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